Mardi 7 juin 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Hervé Le Coroller (Observatoire de Haute-Provence)
Mise en cohĂ©rence des mirroirs primaires Ă lâaide dâun laser supercontinuum
Dans le cadre des Ă©tudes sur les technologies qui pourraient succĂ©der au VLTI nous construisons Ă lâObservatoire de HauteâProvence un dĂ©monstrateur dâun nouveau type dâinterfĂ©romĂštre. Carlina ressemble Ă un tĂ©lescope « classique » diluĂ© et pourrait aussi ĂȘtre un successeur aux ELTs. Il est configurĂ© comme le radio tĂ©lescope dâArecibo avec un miroir primaire sphĂ©rique mais diluĂ© (constituĂ© de petits miroirs espacĂ©s) et fonctionnant dans le visible. Au dessus de ce rĂ©seau de miroir, une nacelle focale suspendue sous un ballon dâhĂ©lium ou sous des cĂąbles tendus entre deux montagnes rĂ©cupĂšre lâimage Ă haute rĂ©solution angulaire des Ă©toiles. Lâabsence de ligne Ă retards, la simplicitĂ© du train optique et la mĂ©trologie interne de mise en cohĂ©rence des miroirs primaires de Carlina devraient confĂ©rer Ă cet interfĂ©romĂštre une grande sensibilitĂ© (mv>15 pour un carlina fonctionnant avec 100 miroirs de 25 cm) et une trĂšs forte capacitĂ© dâimagerie (couverture UV riche). Nous testons actuellement lâensemble du train optique de ce tĂ©lescope diluĂ©. Dans cet exposĂ©, nous dĂ©crirons en dĂ©tail lâasservissement et la mĂ©trologie pour rendre coâ sphĂ©riques (mise en cohĂ©rence) avec une prĂ©cision de lâordre du micron, les miroirs primaires. Nous concluons que Carlina, comme le LBT appartient Ă une nouvelle famille dâinstruments, les tĂ©lescopes diluĂ©s. Un tĂ©lescope diluĂ© dâune centaine de mĂštres de base, ouvrira de nouveaux champs de recherche en imageant les rĂ©gions centrales des AGNs, les microlentilles gravitationnelles, des Jupiters chauds, etc. De par ces caractĂ©ristiques techniques, un tel instrument sera complĂ©mentaire des ELTs et des interfĂ©romĂštres kilomĂ©triques.
Tuesday 10 May 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Ingrid Mann (Belgian Institute for Space Aeronomy BIRA/IASB, Brussels, Belgium; currently at LESIA )
Fluxes of nanometric dust have been recently discovered near Earthâs orbit with electric field measurements onboard the STEREO space mission. The new measurements can be explained with nanodust that is accelerated in the solar wind after being formed during collisions of larger dust particles in the inner solar system. The momentum flux of the nanodust is small compared to that carried by the solar wind and the total cross-sectional area in a given volume in space of the nanodust population is smaller than that of the larger constituents of the interplanetary dust cloud. Hence the contribution of nanodust to the currently known dust interactions with the solar wind is small. The total mass flux observed in the nanodust is a small fraction of the mass that is destroyed by mutual collisions inside 1 AU, but the values are possibly beyond the fluxes that we calculate with dust collision and fragmentation models. The models have large uncertainties and it is quite possible that the nanodust does not form by direct fragmentation of the larger dust, but from a molten or processed phase of the dust material. Measuring the mass distribution of the nanodust in the interplanetary medium will give new insights in the fragmentation process and would allow re-considering the fragmentation models that are also applied in studies of dust evolution in the interstellar medium.
Tuesday 26 April 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Alessandro RetinĂČ (LPP, Ăcole Polytechnique, Palaiseau)
Magnetic reconnection is a universal process occurring at current sheets in astrophysical plasmas, where small-scale changes in the topology of the magnetic field lead to large-scale transport of plasma, acceleration of plasma jets, plasma heating and non-thermal particle acceleration. Reconnection is observed in the solar corona, in the solar wind, in planetary magnetospheres and is considered to play an important role in many other distant objects. Despite of many remote and in situ observations of reconnection, however, a number of key issues are still open; among them the microphysics, the mechanisms of non-thermal particle acceleration and the relationship with turbulence. Solving these issues from an experimental point of view requires in-situ observations of particle distributions functions and electromagnetic fields in reconnection regions, that are only available in the solar system through spacecraft measurements. Here we present some examples of in-situ observations, focusing on the near-Earth space.
Wednesday 6 April 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Yihua Yan (National Astronomical Observatories, Chinese Academy of Sciences, Beijing)
Imaging spectroscopy over cm-dm wave range is important for addressing fundamental processes in the solar eruptive phenomena. The Chinese Spectral Radioheliograph (CSRH) in 0.4-15 GHz range with high time, space and frequency resolutions is being constructed, which will open new observational windows on solar flares and CMEs. The CSRH array is located in a radio quiet region in Inner Mongolia of China. The array of CSRH in 0.4-2.0 GHz with 40 4.5m antennas has been mounted by the end of 2010. The array of CSRH in 2-15 GHz with 60 2m antennas will be established by 2013. The progress about the CSRH project is introduced. Some related programs on Chinese solar-terrestrial physics may also be introduced.
Thursday 31 March 2011 à 11h00 (Salle de confĂ©rence du ** bĂąt. 16 **)
Robert Mutel (University of Iowa)
Radio emission from planetary magnetospheres manifests a rich variety of temporal, spectral, and polarization structure. In principle, analysis of these wave characteristics can be used to infer physical properties of the plasma, both at the site of generation and along the ray path to the observer. For radiation generated near the electron cyclotron frequency, the cyclotron maser instability (CMI), driven by parallel electron beams in converging magnetic fields, is well-accepted as the dominant generation mechanism. However, there are significant unresolved questions concerning the generation and propagation of individual wave modes and their polarization. In particular, both linear and nonlinear mode coupling and conversion at density boundaries has been invoked to explain the observed modes and polarizations. Recent spacecraft observations of terrestrial AKR (Cluster) and Saturnian SKR (Cassini) within their respective auroral acceleration regions have allowed new insights that may simplify this picture. Based on these observations, a simpler paradigm is emerging, in which L, Z, and X modes are generated at the CMI source region, and that observed intensity and polarization characteristics depend almost entirely on propagation effects between the source region and the spacecraft. We illustrate this scheme with ray-tracing results applied to several sample observations taken from Cluster (WBD) and Cassini (RPWS).
Mardi 29 mars 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Dimitra Koutroumpa (Goddard Space Flight Center, Greenbelt)
L’Ă©change de charge est un processus physique de base qui implique le transfert d’Ă©lectrons liĂ©s entre des particules en collision. C’est un phĂ©nomĂšne qui joue un rĂŽle fondamental Ă l’interface hĂ©liosphĂ©rique entre le vent solaire et le milieu interstellaire. Les Ă©changes de charge sont Ă©galement responsables pour l’Ă©mission des rayons X mous des comĂštes. Cette Ă©mission a Ă©tĂ© expliquĂ©e comme la dĂ©sexcitation radiative des Ă©tats excitĂ©s dâions lourds du vent solaire qui sont peuplĂ©s lors des collisions avec des neutres comĂ©taires. Ailleurs dans le systĂšme solaire, les exosphĂšres des planĂštes comme la Terre et Mars, ainsi que les neutres interstellaires qui se propagent dans l’hĂ©liosphĂšre constituent des cibles neutres pour ce phĂ©nomĂšne. Les Ă©missions X post-Ă©changes de charge du vent solaire peuvent ĂȘtre Ă la fois un signal d’intĂ©rĂȘt dans les Ă©tudes du systĂšme solaire, ou un bruit d’avant plan pour les Ă©tudes des plasmas chauds de la galaxie et au-delĂ . Les Ă©missions X par Ă©changes de charge dans la gĂ©ocouronne et l’hĂ©liosphĂšre entourent les observatoires en orbite terrestre et rajoutent un fond variable Ă toute observation X dans le domaine d’Ă©nergies infĂ©rieures Ă 1.5 keV. Je vais prĂ©senter un rĂ©sumĂ© de nos connaissances actuelles sur ces phĂ©nomĂšnes, en insistant sur les Ă©missions X des planĂštes et de l’hĂ©liosphĂšre et la contribution de celle-lĂ au fond diffus X interstellaire. Enfin, je vais briĂšvement discuter le rĂŽle de ce mĂ©canisme d’Ă©mission dans d’autres cas astrophysiques au-delĂ du systĂšme solaire.
Mardi 22 mars 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Michel Curé (Université de Valparaiso, Chili)
The standard theory that describe the wind of massive stars is the radiation driven wind model from Castor et al. (CAK 1975). When the influence of the stellar rotation is included, besides the standard solution of the CAK wind there also exists a new wind solution that we called the slow-omega solution (Curé 2004). We have already successfully described the two component wind of B[e] supergiants (Curé et al. 2005). Furthermore we apply this two component model for a classical Be stars with an oblate structure to describe the winds of these objects, explaining the observed contrast in density between equatorial and polar densities.
Another slow solution exists when de line force parameter delta is larger than 0.25, we call this the slow-delta solution, which has a slower terminal velocity and lower mass loss rate than the fast solution.
We have successfully applied this new slow-delta solution to explain the winds of A-Supergiants and we believe this solution can solve the weak wind problem. Finally we discuss the impact of this new slow-delta solution in the WML relationship.
Tuesday 15 February 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Mario Monteiro (Director Centro de Astrofisica, Universidade do Porto, Portugal)
The stratification near the base of the Sun’s convective envelope is
governed by processes of convective overshooting and element diffusion,
and the region is widely believed to play a key role in the solar
dynamo. The stratification in that region gives rise to a characteristic
signal in the frequencies of solar p modes, which has been used to
determine the depth of the solar convection zone and to investigate the
extent of convective overshoot.
Previous helioseismic investigations have shown that the Sun’s
spherically symmetric stratification in this region is smoother than
that in a standard solar model without overshooting, and have ruled out
simple models incorporating overshooting, which extend the region of
adiabatic stratification and have a more-or-less abrupt transition to
subadiabatic stratification at the edge of the overshoot region.
In this talk we discuss the constraints from Helioseismology, reported
in http://xxx.lanl.gov/abs/1102.0235, through a detailed comparison with
the Sun of physically motivated models which have a smooth transition in
stratification bridging the region from the lower convection zone to the
radiative interior beneath. We find that such a model is in better
agreement with the helioseismic data than a standard solar model.
The seismic method developed to produce this analysis is discussed as
well as the implications that such a result may have for the
interpretation of seismic data of other solar-type stars.
Mardi 8 fĂ©vrier 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Laurent Lamy (LESIA)
Durant les 4 derniĂšres dĂ©cennies, des observations Ă distance ont permis dâidentifier des Ă©missions radio intenses non-thermiques originaires des rĂ©gions aurorales des planĂštes magnĂ©tisĂ©es du systĂšme solaire (la Terre et les planĂštes gĂ©antes). Cependant, seule la rĂ©gion source de lâĂ©mission radio aurorale terrestre (AKR pour Auroral Kilometric Radiation) a pu ĂȘtre Ă©tudiĂ©e in situ grĂące Ă de nombreuses observations spatiales (ISIS 1, Viking, Fast, Freja). Ces mesures ont permis de caractĂ©riser en dĂ©tail les conditions et le mĂ©canisme dâĂ©mission de ce rayonnement radio, gĂ©nĂ©rĂ© au dessus de lâatmosphĂšre par rĂ©sonance cyclotron avec des e- auroraux accĂ©lĂ©rĂ©s ( keV) circulant le long de lignes de champ magnĂ©tiques de haute latitude. Fin 2008, la mission Cassini traversait pour la premiĂšre fois la rĂ©gion aurorale oĂč le rayonnement kilomĂ©trique Ă©quivalent de Saturne (SKR pour Saturn Kilometric Radiation, dĂ©couvert par Voyager en 1980) prend naissance. En tirant partie des observations in situ simultanĂ©es fournies par divers instruments Ă bord (radio, magnĂ©tomĂštre, particules), jâai pu caractĂ©riser le plasma auroral et les propriĂ©tĂ©s de lâonde dans la rĂ©gion source, permettant de tester son mĂ©canisme dâĂ©mission (supposĂ© similaire Ă celui de lâAKR) et contraindre sa source dâĂ©nergie libre. Par ailleurs, les antennes radio dĂ©tectant Ă la fois des Ă©missions locales et distantes, jâai pu dĂ©crire et quantifier lâĂ©volution des propriĂ©tĂ©s de lâonde au cours de leur propagation dans un plasma magnĂ©tisĂ© (polarisation, diagramme dâĂ©mission apparent).
Thursday 3 February 2011 à 11h00 (Salle de confĂ©rence du bĂąt. 17)
Alan Title (LMSAL, Palo Alto, CA, USA)
As the magnetic features on the solar are seen at higher and higher spatial and temporal resolution it becomes increasingly more difficult to recognize the polarity pairs in the flux emergence processes. Modern feature recognition processes identify more fragments than bipoles and even when âgroupsâ are identified a significant fraction of the flux is neglected in the the analysis. Here I discuss a method that generates distributions on a pixel by pixel basis. It is discovered that the distributions have power laws indices of -2.2 to -3.5 in QS and -1 to -1.3 in plage. The measurements of the total and mean flux show there is have nearly perfect polarity balance in the inner network regions independent of radial position on the solar disk and independent of the flux imbalance of the surrounding network fields. If time allows some new results from the AIA mission will be described