Mardi 15 juillet 2008 à 11h00
C.M. Jackman (Imperial College, London (UK))
Cassini’s approach to Saturn took place during the declining phase of the solar cycle, while the solar wind was highly structured by compressions and rarefactions associated with corotating interaction regions (CIRs). We discuss here the nature of the heliospheric structure, using data from the Cassini magnetometer. Upon reaching Saturn, we then explore the nature of the solar wind interaction with the planetary magnetosphere. We study the role of dayside reconnection at Saturn’s magnetopause, both with observations and an empirical reconnection voltage formula adapted from Earth.
We then focus on tail reconnection as the completion of the cycle of energization and circulation of plasma in the kronian system, showing in situ examples of plasmoid passage in the magnetotail. While dayside reconnection at Saturn is expected to play a role in the addition of flux to the magnetosphere, the planet’s rapid rotation and internal sources of plasma also drive dynamics. We discuss the relative importance of these factors for triggering magnetotail reconnection. Finally we explore the relationship between the Saturn Kilomteric Radiation (SKR) emissions and kronian tail reconnection events. This problem is approached from a statistical standpoint by applying a thresholding technique, but also from an observational standpoint by examining individual frequency channels of radio emission.
Mardi 17 juin 2008 à 11h00 (Salle de confĂ©rence du bât. 17)
S. M. Krimigis (Applied Physics Laboratory/Johns Hopkins University, Laurel, MD, USA and Academy of Athens, Athens, Greece)
Voyager 2 (85.3 AU, S28° lat.) is in the inner heliosheath downstream of the solar wind termination shock, having crossed the shock at 83.7 AU several times during days 242-244 of 2007 under relatively quiet solar wind conditions. Large fluctuations in intensities of heliosheath ions, particularly those with energies below 0.2-0.3 MeV, measured throughout the past 185 days suggest that Voyager 2 remains near the shock.
This differs from the situation at Voyager 1, which was evidently left several AU behind the termination shock that moved rapidly sunward over the spacecraft at 94 AU in late 2004, and this difference may help us to separate injection and/or acceleration processes associated with the shock from those associated with the turbulent heliosheath. For example, energy spectra of low-energy heliosheath ions differ at the two spacecraft. The high intensities of these suprathermal heliosheath ions and their relatively hard energy spectra produce high ion partial pressures that dominate those associated with the thermal plasma and magnetic field, indicating that suprathermal ions play a major role in dynamical processes occurring at the termination shock and in the heliosheath.
Mardi 10 juin 2008 à 14h00 (Salle de confĂ©rence du bât. 17)
Don Hall (IFA-Hawaii)
The talk will briefly review previous development by the University of Hawaii / Teledyne Imaging Systems (formerly Rockwell Scientific) of MBE Hg:CdTe NIR material used in the conventional charge integration mode and selected for the Hubble Space Telescope Wide Field Camera 3 and in all three Near Infrared instruments of the James Webb Space Telescope. It will then lay out the case for x = 0.3 Hg:Cd:Te providing the perfect APD in contrast to conventional materials such as Si or InGaAs. Three immediate applications :
1) Noiseless, large format photon counting arrays for astronomy in the visible and near infrared.
2) Intensity interferometry and spectroscopy in the infrared and visible.
3) Entangled photon quantum communications.
will be used to illustrate the broad range of applications of this technology to astronomy and beyond.
Jeudi 29 mai 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
Prof. Dr. Mosalam Shaltout (National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt)
For various reasons, Archaeoastronomy has not been one of the favourite disciplines of the Egyptologists in the past. Probably because of that, important questions such as the orientation of Egyptian temples and the relevance of astronomy in this respect had never been afforded with the necessary seriousness and deepness. The Egyptian-Spanish Mission for the Archaeoastronomy of ancient Egypt has, among its various priorities, the solution of this problem. In order to achieve that, we have measured the orientation of some 330 temples in the Valley, the Delta, the Oases and the Sinai so far. The aim is to find a correct and almost definitive answer to the question of whether the ancient Egyptian sacred constructions were astronomically aligned or not. Our data seem to answer this question in the affirmative sense. Besides, they offer a very interesting new perspective in the field of landscape archaeology, a new discipline hardly worked in Egypt so far, in which terrestrial landscape, dominated by the Nile, and celestial landscape, dominated by the sun and the stars, would combine in order to permit the establishment of Ma’at, the Cosmic Order, on Earth.
Mardi 13 mai 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
Hans Ludwig (CIFIST, GEPI, Observatoire de Paris-Meudon)
I shall give a summary of what is known about the elemental abundances in the solar photosphere from the viewpoint of spectroscopy. Emphasis will be laid on elements that have been subject to investigation in the CIFIST group at the Observatoire de Paris-Meudon, in particular the elements oxygen and thorium. I discuss the role of 3D hydrodynamical model atmospheres for abundance determinations, and point out limitations that need to be overcome to obtain higher fidelity abundances. To motivate the investigations I relate the them to open astrophysical issues in helioseismology and nucleosynthesis.
Mercredi 16 avril 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
Mikhael Pashchenko(1), Georgij Rudnitskij(1), Vyacheslav Slysh(2), Pierre Colom(3) ((1)Institut Astronomique Sternberg, Université de Moscou. (2)Astro Space Center, Moscou. (3)LESIA, Observatoire de Paris-Meudon)
L’exposĂ© donne une revue de nos observations des sources radio masers dans les raies des molĂ©cules OH et H2O. Les observations H2O commencèrent en 1980 sur le radiotĂ©lescope de 22 mètres Ă Pushchino, près de Moscou. Jusqu’Ă prĂ©sent une grande base de donnĂ©es sur la variabilitĂ© des sources a Ă©tĂ© acquise. Le programme contient plus d’une centaine de sources masers (des rĂ©gions de formation d’Ă©toiles et des enveloppes d’Ă©toiles tardives). Une spectroscopie en parallèle de quelques Ă©toiles a montrĂ© une corrĂ©lation entre des flashs dans les raies d’Ă©mission de Balmer et de maser H2O. Les observations de si longue durĂ©e nous ont permis de trouver des rĂ©gularitĂ©s dans les variations des masers sur des intervalles de 10-15 ans. En 2007, nous avons recommencĂ© la collaboration entre nos instituts sur le radiotĂ©lescope de Nançay. Des rĂ©sultats intĂ©ressants ont dĂ©jĂ Ă©tĂ© obtenus y compris les paramètres complets de la polarisation de l’Ă©mission maser de plusieurs sources, quelques nouvelles dĂ©tections, ainsi que des variations assez rapides dans l’Ă©mission maser. Une comparaison des rĂ©sultats OH et H2O provenant de Nançay et Pushchino peut fournir une nouvelle comprĂ©hension dans les conditions physiques de la formation d’Ă©toiles.
Mardi 15 avril 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
Guillermo Stenborg (NASA GSFC and Interferometrics, Inc.)
The Extreme-ultraviolet Imagers on board both the Solar and Heliospheric Observatory (SOHO) and the STEREO Spacecraft, EIT and STEREO EUVI respectively, have been providing (and continue to provide) the solar physics community with an unprecedented view of the extreme-ultraviolet (EUV) solar transition region and corona. In particular, they have observed EUV bright points, coronal holes, loops, and arcades, as well as dynamical events such as flares, EIT waves, and mass ejections. However, the multi-scale nature of the observed solar features has not been fully exploited so far. In particular, a new wavelet-based technique was recently introduced to clean and enhance the SOHO EIT images (Stenborg et al., ApJ, 674, 1201-1206, 2008). The technique has been now successfully adapted to work on the most recent STEREO EUVI images as well. In this talk, after a brief description of the instruments and their science objectives I will show a few examples of features and phenomena not revealed with standard image-processing techniques to assert the effectiveness of the algorithms implemented.
Mardi 8 avril 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
André Csillaghy (Institute of 4D Technologies and DataSpaces, School of Engineering, University of Applied Sciences Northwestern Switzerland, CH-5210 Windisch, Switzerland)
Les observatoires virtuels dans le domaine solaire et hĂ©liosphère se sont dĂ©veloppĂ©s comme des petit pains ces dernières annĂ©es. Pas tellement en Europe, oĂą l’argent manque, mais plutĂ´t aux Etats-Unis. Ils ont reçu la dĂ©nomination affectueuse de "VxO" (remplacez le "x" par plus ou moins n’importe quel objectif de recherche : Solar, Heliospheric, Magnetospheric, Solar Terrestrial, etc.) Mais d’ailleurs... n’Ă©tait-ce pas le but des observatoires virtuels de n’avoir q’un seul point d’accès Ă toutes les donnĂ©es des quatre coins du monde ? J’essayerai d’Ă©clairer ce mystère virtuel, en n’oubliant pas de rappeler quels sont les buts centraux des OV et quelles sont leurs bases techniques. Ensuite, j’essaierai de vous montrer aussi ce que ces instruments, faits de lignes de code plutĂ´t que de vis et de boulons, peuvent offrir de nouveau Ă la communautĂ©, en plus d’un support logistique. Mais je n’en resterai pas lĂ . Je reviendrai sur le fait que les OV ne sont pas encore universellement acceptĂ©s par leurs principaux clients, les scientifiques. Pourquoi donc ? J’essaierai de rĂ©pondre en prĂ©sentant un nouveau projet d’augmentation de l’OV solaire, qui, sans doute, remplacera la passerelle reliant ces nouvelles technologies aux desktops des scientifiques par un pont.
Mardi 18 mars 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
Stéphane Régnier (University of St Andrews, UK)
ConsidĂ©rant que le champ magnĂ©tique de la couronne solaire domine le plasma coronal, l’hypothèse d’un champ magnĂ©tique sans-force (Ă©quilibre nĂ©gligeant les forces de pression et de gravitĂ©) est pleinement justifiĂ©e. Ce modèle ne considère uniquement que les effets du champ magnĂ©tique et des courants Ă©lectriques sur la nature des configurations magnĂ©tiques. Avant d’appliquer ce modèle a la couronne solaire, je m’attache, dans cet expose, a mettre en valeur les effets des courants sur une configuration magnĂ©tique et leurs implications pour les phĂ©nomènes observes dans la couronne. Dans un premier temps, je montre la nature et les variations de l’Ă©nergie magnĂ©tique et de l’hĂ©licitĂ© magnĂ©tique pour une configuration dipolaire en fonction des courants. Dans un second temps, j’Ă©tudie la nature d’un point nul coronal suivant diffĂ©rentes hypothèses de champ magnĂ©tique. Ces Ă©tudes mettent en valeur l’intĂ©rĂŞt de mesurer les courants Ă©lectriques avec beaucoup de prĂ©cision.
Mardi 11 mars 2008 à 11h00 ((Salle de confĂ©rence du bât. 17))
Patricia Schippers (Centre d’Etude Spatiale des Rayonnements, Toulouse)
Depuis le 1er juillet 2004, la sonde Cassini-Huygens explore la magnĂ©tosphère de Saturne de manière dĂ©taillĂ©e, rĂ©coltant continuellement des mesures du champ magnĂ©tique, des ondes, et des populations de gaz neutre et de plasma Ă l’aide d’instruments très perfectionnĂ©s.
Je prĂ©senterai une analyse des populations Ă©lectroniques dans la magnĂ©tosphère interne de Saturne Ă partir de l’intercalibration des donnĂ©es instrumentales des dĂ©tecteurs d’Ă©lectrons de basse Ă©nergie (CAssini Plasma Spectrometer, de 0.6eV Ă 26 keV) et de haute Ă©nergie (Magnetospheric IMaging Instrument, de 12keV Ă 1 MeV). Les populations Ă©lectroniques Ă©tant essentiellement dominĂ©es par une composante "thermique" et une composante "suprathermique", les spectres composites en flux sont ajustĂ©s Ă l’aide d’un modèle de distribution kappa bimodal. Les profils radiaux des paramètres fluides (densitĂ©, tempĂ©rature, pression, indice kappa) dĂ©rivĂ©s pour chacune des populations sont ensuite analysĂ©s, dans le but d’identifier les rĂ©gions et frontières de la magnĂ©tosphère kronienne et de contraindre les schĂ©mas de circulation des Ă©lectrons depuis leurs sources jusqu’Ă leurs puits.